k-nearest neighbor (kNN) searchedit
A k-nearest neighbor (kNN) search finds the k nearest vectors to a query vector, as measured by a similarity metric.
Common use cases for kNN include:
- Relevance ranking based on natural language processing (NLP) algorithms
- Product recommendations and recommendation engines
- Similarity search for images or videos
Prerequisitesedit
-
To run a kNN search, you must be able to convert your data into meaningful vector values. You can create these vectors using a natural language processing (NLP) model in Elasticsearch, or generate them outside Elasticsearch. Vectors can be added to documents as
dense_vector
field values. Queries are represented as vectors with the same dimension.Design your vectors so that the closer a document’s vector is to a query vector, based on a similarity metric, the better its match.
-
To complete the steps in this guide, you must have the following index privileges:
-
create_index
ormanage
to create an index with adense_vector
field -
create
,index
, orwrite
to add data to the index you created -
read
to search the index
-
kNN methodsedit
Elasticsearch supports two methods for kNN search:
-
Approximate kNN using the
knn
search option orknn
query -
Exact, brute-force kNN using a
script_score
query with a vector function
In most cases, you’ll want to use approximate kNN. Approximate kNN offers lower latency at the cost of slower indexing and imperfect accuracy.
Exact, brute-force kNN guarantees accurate results but doesn’t scale well with
large datasets. With this approach, a script_score
query must scan each
matching document to compute the vector function, which can result in slow
search speeds. However, you can improve latency by using a query
to limit the number of matching documents passed to the function. If you
filter your data to a small subset of documents, you can get good search
performance using this approach.
Approximate kNNedit
Compared to other types of search, approximate kNN search has specific resource requirements. In particular, all vector data must fit in the node’s page cache for it to be efficient. Please consult the approximate kNN search tuning guide for important notes on configuration and sizing.
To run an approximate kNN search, use the knn
option
to search one or more dense_vector
fields with indexing enabled.
-
Explicitly map one or more
dense_vector
fields. Approximate kNN search requires the following mapping options:-
A
similarity
value. This value determines the similarity metric used to score documents based on similarity between the query and document vector. For a list of available metrics, see thesimilarity
parameter documentation. Thesimilarity
setting defaults tocosine
.
response = client.indices.create( index: 'image-index', body: { mappings: { properties: { "image-vector": { type: 'dense_vector', dims: 3, similarity: 'l2_norm' }, "title-vector": { type: 'dense_vector', dims: 5, similarity: 'l2_norm' }, title: { type: 'text' }, "file-type": { type: 'keyword' } } } } ) puts response
PUT image-index { "mappings": { "properties": { "image-vector": { "type": "dense_vector", "dims": 3, "similarity": "l2_norm" }, "title-vector": { "type": "dense_vector", "dims": 5, "similarity": "l2_norm" }, "title": { "type": "text" }, "file-type": { "type": "keyword" } } } }
-
A
-
Index your data.
POST image-index/_bulk?refresh=true { "index": { "_id": "1" } } { "image-vector": [1, 5, -20], "title-vector": [12, 50, -10, 0, 1], "title": "moose family", "file-type": "jpg" } { "index": { "_id": "2" } } { "image-vector": [42, 8, -15], "title-vector": [25, 1, 4, -12, 2], "title": "alpine lake", "file-type": "png" } { "index": { "_id": "3" } } { "image-vector": [15, 11, 23], "title-vector": [1, 5, 25, 50, 20], "title": "full moon", "file-type": "jpg" } ...
-
Run the search using the
knn
option or theknn
query (expert case).response = client.search( index: 'image-index', body: { knn: { field: 'image-vector', query_vector: [ -5, 9, -12 ], k: 10, num_candidates: 100 }, fields: [ 'title', 'file-type' ] } ) puts response
POST image-index/_search { "knn": { "field": "image-vector", "query_vector": [-5, 9, -12], "k": 10, "num_candidates": 100 }, "fields": [ "title", "file-type" ] }
The document _score
is determined by
the similarity between the query and document vector. See
similarity
for more information on how kNN
search scores are computed.
Support for approximate kNN search was added in version 8.0. Before
this, dense_vector
fields did not support enabling index
in the mapping.
If you created an index prior to 8.0 containing dense_vector
fields, then to
support approximate kNN search the data must be reindexed using a new field
mapping that sets index: true
which is the default option.
Tune approximate kNN for speed or accuracyedit
To gather results, the kNN search API finds a num_candidates
number of
approximate nearest neighbor candidates on each shard. The search computes the
similarity of these candidate vectors to the query vector, selecting the k
most similar results from each shard. The search then merges the results from
each shard to return the global top k
nearest neighbors.
You can increase num_candidates
for more accurate results at the cost of
slower search speeds. A search with a high value for num_candidates
considers more candidates from each shard. This takes more time, but the
search has a higher probability of finding the true k
top nearest neighbors.
Similarly, you can decrease num_candidates
for faster searches with
potentially less accurate results.
Approximate kNN using byte vectorsedit
The approximate kNN search API supports byte
value vectors in
addition to float
value vectors. Use the knn
option
to search a dense_vector
field with element_type
set to
byte
and indexing enabled.
-
Explicitly map one or more
dense_vector
fields withelement_type
set tobyte
and indexing enabled.response = client.indices.create( index: 'byte-image-index', body: { mappings: { properties: { "byte-image-vector": { type: 'dense_vector', element_type: 'byte', dims: 2 }, title: { type: 'text' } } } } ) puts response
PUT byte-image-index { "mappings": { "properties": { "byte-image-vector": { "type": "dense_vector", "element_type": "byte", "dims": 2 }, "title": { "type": "text" } } } }
-
Index your data ensuring all vector values are integers within the range [-128, 127].
response = client.bulk( index: 'byte-image-index', refresh: true, body: [ { index: { _id: '1' } }, { "byte-image-vector": [ 5, -20 ], title: 'moose family' }, { index: { _id: '2' } }, { "byte-image-vector": [ 8, -15 ], title: 'alpine lake' }, { index: { _id: '3' } }, { "byte-image-vector": [ 11, 23 ], title: 'full moon' } ] ) puts response
POST byte-image-index/_bulk?refresh=true { "index": { "_id": "1" } } { "byte-image-vector": [5, -20], "title": "moose family" } { "index": { "_id": "2" } } { "byte-image-vector": [8, -15], "title": "alpine lake" } { "index": { "_id": "3" } } { "byte-image-vector": [11, 23], "title": "full moon" }
-
Run the search using the
knn
option ensuring thequery_vector
values are integers within the range [-128, 127].response = client.search( index: 'byte-image-index', body: { knn: { field: 'byte-image-vector', query_vector: [ -5, 9 ], k: 10, num_candidates: 100 }, fields: [ 'title' ] } ) puts response
POST byte-image-index/_search { "knn": { "field": "byte-image-vector", "query_vector": [-5, 9], "k": 10, "num_candidates": 100 }, "fields": [ "title" ] }
Byte quantized kNN searchedit
If you want to provide float
vectors, but want the memory savings of byte
vectors, you can use the
quantization feature. Quantization allows you to provide float
vectors, but
internally they are indexed as byte
vectors. Additionally, the original float
vectors are still retained
in the index.
To use quantization, you can use the index type int8_hnsw
object in the dense_vector
mapping.
response = client.indices.create( index: 'quantized-image-index', body: { mappings: { properties: { "image-vector": { type: 'dense_vector', element_type: 'float', dims: 2, index: true, index_options: { type: 'int8_hnsw' } }, title: { type: 'text' } } } } ) puts response
PUT quantized-image-index { "mappings": { "properties": { "image-vector": { "type": "dense_vector", "element_type": "float", "dims": 2, "index": true, "index_options": { "type": "int8_hnsw" } }, "title": { "type": "text" } } } }
-
Index your
float
vectors.response = client.bulk( index: 'quantized-image-index', refresh: true, body: [ { index: { _id: '1' } }, { "image-vector": [ 0.1, -2 ], title: 'moose family' }, { index: { _id: '2' } }, { "image-vector": [ 0.75, -1 ], title: 'alpine lake' }, { index: { _id: '3' } }, { "image-vector": [ 1.2, 0.1 ], title: 'full moon' } ] ) puts response
POST quantized-image-index/_bulk?refresh=true { "index": { "_id": "1" } } { "image-vector": [0.1, -2], "title": "moose family" } { "index": { "_id": "2" } } { "image-vector": [0.75, -1], "title": "alpine lake" } { "index": { "_id": "3" } } { "image-vector": [1.2, 0.1], "title": "full moon" }
-
Run the search using the
knn
option. When searching, thefloat
vector is automatically quantized to abyte
vector.response = client.search( index: 'quantized-image-index', body: { knn: { field: 'image-vector', query_vector: [ 0.1, -2 ], k: 10, num_candidates: 100 }, fields: [ 'title' ] } ) puts response
POST quantized-image-index/_search { "knn": { "field": "image-vector", "query_vector": [0.1, -2], "k": 10, "num_candidates": 100 }, "fields": [ "title" ] }
Since the original float
vectors are still retained in the index, you can optionally use them for re-scoring. Meaning,
you can search over all the vectors quickly using the int8_hnsw
index and then rescore only the top k
results. This
provides the best of both worlds, fast search and accurate scoring.
response = client.search( index: 'quantized-image-index', body: { knn: { field: 'image-vector', query_vector: [ 0.1, -2 ], k: 15, num_candidates: 100 }, fields: [ 'title' ], rescore: { window_size: 10, query: { rescore_query: { script_score: { query: { match_all: {} }, script: { source: "cosineSimilarity(params.query_vector, 'image-vector') + 1.0", params: { query_vector: [ 0.1, -2 ] } } } } } } } ) puts response
POST quantized-image-index/_search { "knn": { "field": "image-vector", "query_vector": [0.1, -2], "k": 15, "num_candidates": 100 }, "fields": [ "title" ], "rescore": { "window_size": 10, "query": { "rescore_query": { "script_score": { "query": { "match_all": {} }, "script": { "source": "cosineSimilarity(params.query_vector, 'image-vector') + 1.0", "params": { "query_vector": [0.1, -2] } } } } } } }
Filtered kNN searchedit
The kNN search API supports restricting the search using a filter. The search
will return the top k
documents that also match the filter query.
The following request performs an approximate kNN search filtered by the
file-type
field:
response = client.search( index: 'image-index', body: { knn: { field: 'image-vector', query_vector: [ 54, 10, -2 ], k: 5, num_candidates: 50, filter: { term: { "file-type": 'png' } } }, fields: [ 'title' ], _source: false } ) puts response
POST image-index/_search { "knn": { "field": "image-vector", "query_vector": [54, 10, -2], "k": 5, "num_candidates": 50, "filter": { "term": { "file-type": "png" } } }, "fields": ["title"], "_source": false }
The filter is applied during the approximate kNN search to ensure
that k
matching documents are returned. This contrasts with a
post-filtering approach, where the filter is applied after the approximate
kNN search completes. Post-filtering has the downside that it sometimes
returns fewer than k results, even when there are enough matching documents.
Combine approximate kNN with other featuresedit
You can perform hybrid retrieval by providing both the
knn
option and a query
:
response = client.search( index: 'image-index', body: { query: { match: { title: { query: 'mountain lake', boost: 0.9 } } }, knn: { field: 'image-vector', query_vector: [ 54, 10, -2 ], k: 5, num_candidates: 50, boost: 0.1 }, size: 10 } ) puts response
POST image-index/_search { "query": { "match": { "title": { "query": "mountain lake", "boost": 0.9 } } }, "knn": { "field": "image-vector", "query_vector": [54, 10, -2], "k": 5, "num_candidates": 50, "boost": 0.1 }, "size": 10 }
This search finds the global top k = 5
vector matches, combines them with the matches from the match
query, and
finally returns the 10 top-scoring results. The knn
and query
matches are combined through a disjunction, as if you
took a boolean or between them. The top k
vector results represent the global nearest neighbors across all index
shards.
The score of each hit is the sum of the knn
and query
scores. You can specify a boost
value to give a weight to
each score in the sum. In the example above, the scores will be calculated as
score = 0.9 * match_score + 0.1 * knn_score
The knn
option can also be used with aggregations
.
In general, Elasticsearch computes aggregations over all documents that match the search.
So for approximate kNN search, aggregations are calculated on the top k
nearest documents. If the search also includes a query
, then aggregations are
calculated on the combined set of knn
and query
matches.
Perform semantic searchedit
kNN search enables you to perform semantic search by using a previously deployed text embedding model. Instead of literal matching on search terms, semantic search retrieves results based on the intent and the contextual meaning of a search query.
Under the hood, the text embedding NLP model generates a dense vector from the
input query string called model_text
you provide. Then, it is searched
against an index containing dense vectors created with the same text embedding
machine learning model. The search results are semantically similar as learned by the model.
To perform semantic search:
- you need an index that contains the dense vector representation of the input data to search against,
- you must use the same text embedding model for search that you used to create the dense vectors from the input data,
- the text embedding NLP model deployment must be started.
Reference the deployed text embedding model or the model deployment in the
query_vector_builder
object and provide the search query as model_text
:
(...) { "knn": { "field": "dense-vector-field", "k": 10, "num_candidates": 100, "query_vector_builder": { "text_embedding": { "model_id": "my-text-embedding-model", "model_text": "The opposite of blue" } } } } (...)
The natural language processing task to perform. It must be |
|
The ID of the text embedding model to use to generate the dense vectors from
the query string. Use the same model that generated the embeddings from the
input text in the index you search against. You can use the value of the
|
|
The query string from which the model generates the dense vector representation. |
For more information on how to deploy a trained model and use it to create text embeddings, refer to this end-to-end example.
Search multiple kNN fieldsedit
In addition to hybrid retrieval, you can search more than one kNN vector field at a time:
response = client.search( index: 'image-index', body: { query: { match: { title: { query: 'mountain lake', boost: 0.9 } } }, knn: [ { field: 'image-vector', query_vector: [ 54, 10, -2 ], k: 5, num_candidates: 50, boost: 0.1 }, { field: 'title-vector', query_vector: [ 1, 20, -52, 23, 10 ], k: 10, num_candidates: 10, boost: 0.5 } ], size: 10 } ) puts response
POST image-index/_search { "query": { "match": { "title": { "query": "mountain lake", "boost": 0.9 } } }, "knn": [ { "field": "image-vector", "query_vector": [54, 10, -2], "k": 5, "num_candidates": 50, "boost": 0.1 }, { "field": "title-vector", "query_vector": [1, 20, -52, 23, 10], "k": 10, "num_candidates": 10, "boost": 0.5 }], "size": 10 }
This search finds the global top k = 5
vector matches for image-vector
and the global k = 10
for the title-vector
.
These top values are then combined with the matches from the match
query and the top-10 documents are returned.
The multiple knn
entries and the query
matches are combined through a disjunction,
as if you took a boolean or between them. The top k
vector results represent the global nearest neighbors across
all index shards.
The scoring for a doc with the above configured boosts would be:
score = 0.9 * match_score + 0.1 * knn_score_image-vector + 0.5 * knn_score_title-vector
Search kNN with expected similarityedit
While kNN is a powerful tool, it always tries to return k
nearest neighbors. Consequently, when using knn
with
a filter
, you could filter out all relevant documents and only have irrelevant ones left to search. In that situation,
knn
will still do its best to return k
nearest neighbors, even though those neighbors could be far away in the
vector space.
To alleviate this worry, there is a similarity
parameter available in the knn
clause. This value is the required
minimum similarity for a vector to be considered a match. The knn
search flow with this parameter is as follows:
-
Apply any user provided
filter
queries -
Explore the vector space to get
k
vectors -
Do not return any vectors that are further away than the configured
similarity
similarity
is the true similarity before it has been transformed into _score
and boost applied.
For each configured similarity, here is the corresponding inverted _score
function. This is so if you are wanting to filter from a _score
perspective, you can do this minor transformation to correctly reject irrelevant results.
-
l2_norm
:sqrt((1 / _score) - 1)
-
cosine
:(2 * _score) - 1
-
dot_product
:(2 * _score) - 1
-
max_inner_product
:-
_score < 1
:1 - (1 / _score)
-
_score >= 1
:_score - 1
-
Here is an example. In this example we search for the given query_vector
for k
nearest neighbors. However, with
filter
applied and requiring that the found vectors have at least the provided similarity
between them.
response = client.search( index: 'image-index', body: { knn: { field: 'image-vector', query_vector: [ 1, 5, -20 ], k: 5, num_candidates: 50, similarity: 36, filter: { term: { "file-type": 'png' } } }, fields: [ 'title' ], _source: false } ) puts response
POST image-index/_search { "knn": { "field": "image-vector", "query_vector": [1, 5, -20], "k": 5, "num_candidates": 50, "similarity": 36, "filter": { "term": { "file-type": "png" } } }, "fields": ["title"], "_source": false }
In our data set, the only document with the file type of png
has a vector of [42, 8, -15]
. The l2_norm
distance
between [42, 8, -15]
and [1, 5, -20]
is 41.412
, which is greater than the configured similarity of 36
. Meaning,
this search will return no hits.
Nested kNN Searchedit
It is common for text to exceed a particular model’s token limit and requires chunking before building the embeddings
for individual chunks. When using nested
with dense_vector
, you can achieve nearest
passage retrieval without copying top-level document metadata.
Here is a simple passage vectors index that stores vectors and some top-level metadata for filtering.
response = client.indices.create( index: 'passage_vectors', body: { mappings: { properties: { full_text: { type: 'text' }, creation_time: { type: 'date' }, paragraph: { type: 'nested', properties: { vector: { type: 'dense_vector', dims: 2 }, text: { type: 'text', index: false } } } } } } ) puts response
PUT passage_vectors { "mappings": { "properties": { "full_text": { "type": "text" }, "creation_time": { "type": "date" }, "paragraph": { "type": "nested", "properties": { "vector": { "type": "dense_vector", "dims": 2 }, "text": { "type": "text", "index": false } } } } } }
With the above mapping, we can index multiple passage vectors along with storing the individual passage text.
response = client.bulk( index: 'passage_vectors', refresh: true, body: [ { index: { _id: '1' } }, { full_text: 'first paragraph another paragraph', creation_time: '2019-05-04', paragraph: [ { vector: [ 0.45, 45 ], text: 'first paragraph', paragraph_id: '1' }, { vector: [ 0.8, 0.6 ], text: 'another paragraph', paragraph_id: '2' } ] }, { index: { _id: '2' } }, { full_text: 'number one paragraph number two paragraph', creation_time: '2020-05-04', paragraph: [ { vector: [ 1.2, 4.5 ], text: 'number one paragraph', paragraph_id: '1' }, { vector: [ -1, 42 ], text: 'number two paragraph', paragraph_id: '2' } ] } ] ) puts response
POST passage_vectors/_bulk?refresh=true { "index": { "_id": "1" } } { "full_text": "first paragraph another paragraph", "creation_time": "2019-05-04", "paragraph": [ { "vector": [ 0.45, 45 ], "text": "first paragraph", "paragraph_id": "1" }, { "vector": [ 0.8, 0.6 ], "text": "another paragraph", "paragraph_id": "2" } ] } { "index": { "_id": "2" } } { "full_text": "number one paragraph number two paragraph", "creation_time": "2020-05-04", "paragraph": [ { "vector": [ 1.2, 4.5 ], "text": "number one paragraph", "paragraph_id": "1" }, { "vector": [ -1, 42 ], "text": "number two paragraph", "paragraph_id": "2" } ] }
The query will seem very similar to a typical kNN search:
response = client.search( index: 'passage_vectors', body: { fields: [ 'full_text', 'creation_time' ], _source: false, knn: { query_vector: [ 0.45, 45 ], field: 'paragraph.vector', k: 2, num_candidates: 2 } } ) puts response
POST passage_vectors/_search { "fields": ["full_text", "creation_time"], "_source": false, "knn": { "query_vector": [ 0.45, 45 ], "field": "paragraph.vector", "k": 2, "num_candidates": 2 } }
Note below that even though we have 4 total vectors, we still return two documents. kNN search over nested dense_vectors
will always diversify the top results over the top-level document. Meaning, "k"
top-level documents will be returned,
scored by their nearest passage vector (e.g. "paragraph.vector"
).
{ "took": 4, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 2, "relation": "eq" }, "max_score": 1.0, "hits": [ { "_index": "passage_vectors", "_id": "1", "_score": 1.0, "fields": { "creation_time": [ "2019-05-04T00:00:00.000Z" ], "full_text": [ "first paragraph another paragraph" ] } }, { "_index": "passage_vectors", "_id": "2", "_score": 0.9997144, "fields": { "creation_time": [ "2020-05-04T00:00:00.000Z" ], "full_text": [ "number one paragraph number two paragraph" ] } } ] } }
What if you wanted to filter by some top-level document metadata? You can do this by adding filter
to your
knn
clause.
filter
will always be over the top-level document metadata. This means you cannot filter based on nested
field metadata.
response = client.search( index: 'passage_vectors', body: { fields: [ 'creation_time', 'full_text' ], _source: false, knn: { query_vector: [ 0.45, 45 ], field: 'paragraph.vector', k: 2, num_candidates: 2, filter: { bool: { filter: [ { range: { creation_time: { gte: '2019-05-01', lte: '2019-05-05' } } } ] } } } } ) puts response
POST passage_vectors/_search { "fields": [ "creation_time", "full_text" ], "_source": false, "knn": { "query_vector": [ 0.45, 45 ], "field": "paragraph.vector", "k": 2, "num_candidates": 2, "filter": { "bool": { "filter": [ { "range": { "creation_time": { "gte": "2019-05-01", "lte": "2019-05-05" } } } ] } } } }
Now we have filtered based on the top level "creation_time"
and only one document falls within that range.
{ "took": 4, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 1, "relation": "eq" }, "max_score": 1.0, "hits": [ { "_index": "passage_vectors", "_id": "1", "_score": 1.0, "fields": { "creation_time": [ "2019-05-04T00:00:00.000Z" ], "full_text": [ "first paragraph another paragraph" ] } } ] } }
Nested kNN Search with Inner hitsedit
Additionally, if you wanted to extract the nearest passage for a matched document, you can supply inner_hits
to the knn
clause.
When using inner_hits
and multiple knn
clauses, be sure to specify the inner_hits.name
field. Otherwise, a naming clash can occur and fail the search request.
POST passage_vectors/_search { "fields": [ "creation_time", "full_text" ], "_source": false, "knn": { "query_vector": [ 0.45, 45 ], "field": "paragraph.vector", "k": 2, "num_candidates": 2, "inner_hits": { "_source": false, "fields": [ "paragraph.text" ], "size": 1 } } }
Now the result will contain the nearest found paragraph when searching.
{ "took": 4, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 2, "relation": "eq" }, "max_score": 1.0, "hits": [ { "_index": "passage_vectors", "_id": "1", "_score": 1.0, "fields": { "creation_time": [ "2019-05-04T00:00:00.000Z" ], "full_text": [ "first paragraph another paragraph" ] }, "inner_hits": { "paragraph": { "hits": { "total": { "value": 2, "relation": "eq" }, "max_score": 1.0, "hits": [ { "_index": "passage_vectors", "_id": "1", "_nested": { "field": "paragraph", "offset": 0 }, "_score": 1.0, "fields": { "paragraph": [ { "text": [ "first paragraph" ] } ] } } ] } } } }, { "_index": "passage_vectors", "_id": "2", "_score": 0.9997144, "fields": { "creation_time": [ "2020-05-04T00:00:00.000Z" ], "full_text": [ "number one paragraph number two paragraph" ] }, "inner_hits": { "paragraph": { "hits": { "total": { "value": 2, "relation": "eq" }, "max_score": 0.9997144, "hits": [ { "_index": "passage_vectors", "_id": "2", "_nested": { "field": "paragraph", "offset": 1 }, "_score": 0.9997144, "fields": { "paragraph": [ { "text": [ "number two paragraph" ] } ] } } ] } } } } ] } }
Indexing considerationsedit
For approximate kNN search, Elasticsearch stores the dense vector values of each segment as an HNSW graph. Indexing vectors for approximate kNN search can take substantial time because of how expensive it is to build these graphs. You may need to increase the client request timeout for index and bulk requests. The approximate kNN tuning guide contains important guidance around indexing performance, and how the index configuration can affect search performance.
In addition to its search-time tuning parameters, the HNSW algorithm has
index-time parameters that trade off between the cost of building the graph,
search speed, and accuracy. When setting up the dense_vector
mapping, you
can use the index_options
argument to adjust
these parameters:
response = client.indices.create( index: 'image-index', body: { mappings: { properties: { "image-vector": { type: 'dense_vector', dims: 3, similarity: 'l2_norm', index_options: { type: 'hnsw', m: 32, ef_construction: 100 } } } } } ) puts response
PUT image-index { "mappings": { "properties": { "image-vector": { "type": "dense_vector", "dims": 3, "similarity": "l2_norm", "index_options": { "type": "hnsw", "m": 32, "ef_construction": 100 } } } } }
Limitations for approximate kNN searchedit
-
When using kNN search in cross-cluster search, the
ccs_minimize_roundtrips
option is not supported. - Elasticsearch uses the HNSW algorithm to support efficient kNN search. Like most kNN algorithms, HNSW is an approximate method that sacrifices result accuracy for improved search speed. This means the results returned are not always the true k closest neighbors.
Approximate kNN search always uses the
dfs_query_then_fetch
search type in order to gather
the global top k
matches across shards. You cannot set the
search_type
explicitly when running kNN search.
Exact kNNedit
To run an exact kNN search, use a script_score
query with a vector function.
-
Explicitly map one or more
dense_vector
fields. If you don’t intend to use the field for approximate kNN, set theindex
mapping option tofalse
. This can significantly improve indexing speed.response = client.indices.create( index: 'product-index', body: { mappings: { properties: { "product-vector": { type: 'dense_vector', dims: 5, index: false }, price: { type: 'long' } } } } ) puts response
PUT product-index { "mappings": { "properties": { "product-vector": { "type": "dense_vector", "dims": 5, "index": false }, "price": { "type": "long" } } } }
-
Index your data.
POST product-index/_bulk?refresh=true { "index": { "_id": "1" } } { "product-vector": [230.0, 300.33, -34.8988, 15.555, -200.0], "price": 1599 } { "index": { "_id": "2" } } { "product-vector": [-0.5, 100.0, -13.0, 14.8, -156.0], "price": 799 } { "index": { "_id": "3" } } { "product-vector": [0.5, 111.3, -13.0, 14.8, -156.0], "price": 1099 } ...
-
Use the search API to run a
script_score
query containing a vector function.To limit the number of matched documents passed to the vector function, we recommend you specify a filter query in the
script_score.query
parameter. If needed, you can use amatch_all
query in this parameter to match all documents. However, matching all documents can significantly increase search latency.response = client.search( index: 'product-index', body: { query: { script_score: { query: { bool: { filter: { range: { price: { gte: 1000 } } } } }, script: { source: "cosineSimilarity(params.queryVector, 'product-vector') + 1.0", params: { "queryVector": [ -0.5, 90, -10, 14.8, -156 ] } } } } } ) puts response
POST product-index/_search { "query": { "script_score": { "query" : { "bool" : { "filter" : { "range" : { "price" : { "gte": 1000 } } } } }, "script": { "source": "cosineSimilarity(params.queryVector, 'product-vector') + 1.0", "params": { "queryVector": [-0.5, 90.0, -10, 14.8, -156.0] } } } } }